
Domain-specific languages with JetBrains MPS:

A comparison with AToM3

Kevin Buyl

University of Antwerp, Belgium

Abstract

Since model-driven engineering is becoming more and more popular these
days, it is good to spend some time analyzing the current tools for this job.
In this paper we are going to build a domain-specific language for a traffic
network in JetBrains MPS. This relatively new tool delivers a brand new
concept of software development environment implementing the Language
Oriented Programming paradigm, which is a style of computer program-
ming in which, rather than solving problems in general-purpose program-
ming languages, the programmer creates one or more domain-specific lan-
guages for the problem first and then solves the problem in those languages.
Since we already implemented the traffic formalism in another modeling tool,
AToM3, we can use this to compare the two tools. Besides summing up the
general equalities/differences between them, we can also give some advan-
tages/disadvantages based on this traffic example.

Keywords:
Language Oriented Programming, Generative programming, Meta
Programming, Model-Driven Engineering, Model Transformation,
Domain-Specific Languages, JetBrains MPS, AToM3

1. Introduction

These days a lot of computer programs are still being developed by a
mainstream programming approach. With a general-purpose language such

Email address: kevin.buyl@student.ua.ac.be (Kevin Buyl)

Preprint submitted to Elsevier June 29, 2011



as Java or C++, it is possible to implement almost every solution to a prob-
lem. However some solutions will take years to implement due to the nature
of a general-purpose language. This is why mainstream programming has
come to a dead-end. It is very unproductive and has several issues. It forces
the programmer to think like a computer rather than have the computer
think more like the programmer, like it is stated in Dmitriev (2004).

A domain-specific language (DSL) on the other hand lets us think more
in terms of concepts. This way, it is much easier for the programmer to
build his solution. But the strength of DSLs, domain specificity, is also their
weakness. What we really want are different languages for every specific part
of the program that can work together. To achieve this kind of freedom we
need to create, reuse and modify languages. This is where language oriented
programming comes in.

Terms like model-driven architecture, generative programming and inten-
tional programming all specify a specific part of the model-driven engineering
domain but in this paper we are going to unit them all under one name, lan-
guage oriented programming.

In section 2 a brief introduction to language oriented programming is
given, based on Dmitriev (2004) and Ward (1994). We will also see why
this new paradigm is needed and we give some advantages over mainstream
programming. In section 3 we will show you how to build the Traffic language
in JetBrains MPS. In section 4 a comparison is made between JetBrains MPS
and AToM3. Finally we present our conclusions and future work in section
5.

2. Language Oriented Programming with JetBrains MPS

2.1. What is Language Oriented Programming?

This paradigm focuses on building a domain-specific language for the
problem instead of developing the whole application in a general-purpose
language, like C++ or Java. Like it is stated in Dmitriev (2004), the three
steps of development of an application in a general-purpose language are:

1. Think: You have a conceptual model in your head.

2. Choose: You choose a general-purpose language.

3. Program: You write the solution by performing a difficult mapping
from the conceptual model to the programming language.

2



The Program step is the bottleneck in the process because the mapping
is far from easy. In section 2.2 we will see more on that and also look at some
other issues with mainstream programming.

For language oriented programming on the other hand the process con-
tains four steps:

1. Think: You have a conceptual model in your head.

2. Choose: You choose some specialized DSLs to write the solution.

3. Create: If there are no appropriate DSLs for your problem, then you
create one.

4. Program: You write the solution by performing a straightforward map-
ping from the conceptual model to DSL.

The problem is now shifted to the Create step, but with the support
of an IDE, this problem is not so challenging as the previous. The DSL is
also transformed into a language that the computer understands, but this
mapping is far more easy and usually only written once when the DSL is
created.

In other words: everything starts by developing a high-level, domain-
oriented, language. The development process then splits into two indepen-
dent stages: (1) Implement the system using this ’middle level’ language,
and (2) Implement a compiler or translator or interpreter for the language,
using existing technology.

2.2. Why do we need Language Oriented Programming?

There are several reasons for doing language oriented programming rather
than doing mainstream programming. The main reason for this is due to the
nature of a general-purpose language. We will now give some issues, pro-
posed in Dmitriev (2004), with this kind of programming. The first one is
the time delay to implement ideas. There is always a long gap between the
idea of a solution and the solution itself in the form of a program. There
always has to be a object-oriented design (OOD) step in order to convert
the ideas to classes, methods and functions. With language oriented pro-
gramming this is not needed anymore. A second issue is understanding and
maintaining existing code. Even if the code is written by yourself, the prob-
lem stays the same. Since for general-purpose language the high-level idea
is converted to low-level features of the language, the big picture is lost af-
ter the implementation step. Trying to reconstruct the main idea from the

3



low-level code requires a lot of effort and time. The third issue is due to the
domain learning curve. With the OOD, extending the language is done by
using class libraries. The problem is that those libraries are not expressed
in terms of domain concepts, but in low-level general-purpose features. For
example with a GUI or database library, which is not easy to learn, we have
a steep learning curve because the mapping of the domain to this library is
not obvious. If you are an expert in the domain and you are familiar with
the library, there’s still a the problem developing the application. It takes
very long to actually build the application in such a library. This is because
of the complicated constructions you have to make with simple components
in the library.

In Ward (1994), they list several advantages of language oriented pro-
gramming. The first one is the separation of concerns between design issues,
which are addresses in a domain-specific language and implementation issues,
which are addressed in the implementation of the language and are separated
from the design of the system. Another advantage is the high development
productivity. This is due to the fact that with a problem-specific very high
level language, a few lines of code are sufficient to implement highly com-
plex functions. The very high level language means that a small amount of
code in this language can achieve a great deal of work. The third advantage
is related to the previous one. Language oriented programming improves
the maintainability of the design. With traditional programming it becomes
very difficult for maintainers to determine all the impacts of a particular de-
sign decision, or conversely, to determine which design decisions led to this
particular piece of code being written in this way. With language oriented
development, the effects of a design decision will usually be localized to one
part of the system. Another advantage of language oriented programming
is a highly portable design. Porting to a new operating system or program-
ming language becomes greatly simplified: only the middle language needs
to be reimplemented on the new machine, the implementation of the system
(written in that language) can then be copied across without change. A fi-
nal advantage we’re gonna discuss is the opportunity for reuse. There is a
great potential for reuse of the middle level languages for similar develop-
ment projects. The languages encapsulate a great deal of domain knowledge:
including knowledge of which data types, operations and execution meth-
ods are important in this domain, and what are the best ways to implement
them.

4



2.3. What is a language in Language Oriented Programming?

Before we can introduce JetBrains MPS, we first have to answer a very im-
portant question: ”What is a language in language oriented programming?”.
To answer this question we refer to Dmitriev (2004), which states that a
language is defined by 3 main components: structure, editor and semantics.
The structure defines its abstract syntax (what concepts are defined and how
they are arranged). The editor defines its concrete syntax (how it should be
presented). Finally the semantics describe how it should be interpreted and
how it should be transformed into executable code.

2.4. JetBrains MPS

The Meta Programming System (MPS) of JetBrains implements this new
paradigm of language oriented programming. To start we will explain why
MPS is not just another text editor. Normally programs are all stored as
text and edited by a text editor. But why should we do this if the most
important part of a language is its grammar. When we compile a program,
the code written as text is first parsed into a abstract syntax tree (AST)
during compilation. The major drawback of storing text like this is the loss
of extensibility. Since we cannot easily make changes to a language’s gram-
mar, the language cannot be extended by programmers itself. Also adding
new features can make the language ambiguous. For this reason JetBrains
MPS separates the representation and the storage of the program from the
program itself. To make creating languages easy, the program and all lan-
guage concepts are directly stored in a structured graph and not as plain
text. So MPS differentiates itself from many other language workbenches by
avoiding the text form. Your programs are always represented by an AST.
You edit the code as an AST, you save it as an AST and you compile it as
an AST. Due to this feature of MPS it is possible to easily extend languages.
It is also possible to mix languages. When one wants to use a concept of an
already existing language, you can just import this concept without making
the existing or the new language ambiguous.

The basic notions of JetBrains MPS are nodes, concepts and languages.
Nodes form a tree. Each node has a parent node (except for root nodes),
child nodes, properties, and references to other nodes.

Nodes can be very different from one another. Each node stores a ref-
erence to its declaration, its concept. A concept sets a ”type” of connected
nodes. It defines the class of nodes and coins the structure of nodes in that
class. It specifies which children, properties, and references an instance of a

5



node can have. Concept declarations form an inheritance hierarchy. If one
concept extends another, it inherits all children, properties, and references
from its parent.

A language in MPS is a set of concepts with some additional information.
The additional information includes details on editors, completion menu, in-
tentions, typesystem, generator, etc. associated with the language. This
information forms several language aspects. Obviously, a language can ex-
tend another language. An extending language can use any concepts defined
in the extended language as types for its children or references, and its con-
cepts can inherit from any concept of the extended language.

A project is the main organizational unit in MPS. Projects consist of one
or more modules, which themselves consist of models. A model is the smallest
unit for generation/compilation. To give your code some structure, programs
in MPS are organized into models. Think of models as somewhat similar to
compilation units in text based languages. Models typically consist of root
nodes, which represent top level declarations, and non-root nodes. Models
themselves are the most fine-grained grouping elements.

Modules organize models into higher level entities. A module typically
consists of several models accompanied with meta information describing
module’s properties and dependencies. MPS distinguishes several types of
modules: solutions, languages, devkits, and generators.

A solution is the simplest possible kind of module in MPS. It is just a set
of models unified under a common name.

A language is a module that is more complex than a solution and rep-
resents a reusable language. It consists of several models, each defining a
certain aspect of the language: structure, editor, actions, typesystem, etc.

The structure aspect of the language defines the ’structure’ of a new lan-
guage. To define a language’s abstract syntax you should enumerate all the
types in the language. The types simply represent the features, or concepts,
that the language supports. Each concept should be defined by its name, the
internal properties of its instances, and the relationships (basically links) its
instances can have with other nodes.

The editor language aspect helps you define the layout of cells for each
concept in the language. You can define which parts are constant, like braces
or other decorations, and which parts are variable and need the user to define
them. The editor language also helps you add powerful features to your
own editors, like auto-complete, refactoring, browsing, syntax highlighting,
error highlighting, and anything else you can think of. Since it completely

6



works with an AST and the editor aspect of the language lets us specify its
presentation in a very detailed way, we can conclude that JetBrains MPS is
not a purely textual tool, it is in the middle of textual and graphical.

Generators define possible transformations of a language into something
else, typically into another languages. Generators may depend on other gen-
erators. Since the order in which generators are applied to code is important,
ordering constraints can be set on generators.

We have already mentioned that a basic notion of JetBrains MPS is a
node. A concept, specified in the structure aspect of the language, is itself a
node and its instances are all nodes to. Even the components of the language
aspects (structure, editor, actions, typesystem, ...) are nodes. This is because
the language aspects are languages them selfs. The structure language, that
is part of MPS, for example, specifies every structure language aspect of a
language you create. In terms of model-driven engineering, you can see an
instance of your language as a model, the language itself as an meta-model
and the languages of the structure, editor, actions, ... aspects of the your
language as meta-meta-models.

We conclude that MPS has all features that describe a language, like
we discussed in section 2.3. An abstract syntax presented by the structure
language aspect, a concrete syntax presented by the editor aspect of the
language and semantics by using a generator.

3. JetBrains MPS: Traffic language

It is now time to build an example language in JetBrains MPS. We’re
going to build a Traffic language, in which it is possible to connect roads
to form a traffic network. Since we have already created this formalism in
AToM3, we are going to use the same features. By doing this, we get a more
clear comparison between the 2 implementations.

The concepts we need for this language are:

1. Input: an input port

2. Output: an output port

3. Generator: generates a number of cars (1 output)

4. Road: a road (1 input, 1 output)

5. Merger: merges two roads together (2 inputs, 1 output)

6. Splitter: splits a road in 2 roads (1 input, 2 outputs)

7. Sink: the end of a road where cars can enter (1 input)

7



8. Car: can be connected to a road

9. Constraint: can be connected to several road segments (Road, Merger
and Splitter) and has a value that determines the maximum number of
cars that can be on those road segments

10. TrafficLight: can be connected to a road segment (Road, Merger and
Splitter) and has different modes/lights (pass/not pass) for the cars

By using input and output ports the road segments (Road, Merger and
Splitter), generators and sinks can be connected to each other more easily,
with less constraints and redundant connections.

To show the power of extending/mixing languages in MPS, we’re going
to build 2 languages. The Traffic language contains all the concepts above,
except for the TrafficLight. In this language it will be possible to connect road
segments together, specify constraints and connect cars. To implement the
TrafficLight we are going to build another language. This language consists
of a Light concept and a TrafficLight concept. The idea is to specify the
order of the lights. We will do this by connecting them in a loop. After some
specified time the light will change to the next light. This language can be
seen as a state machine. After building the TrafficLight language, the Traffic
language can use this language to specify a traffic light for a road segment.
This way we showed that extending/mixing languages is possible.

To start we create a new MPS project, named Traffic, and create 2 lan-
guages, be.ac.ua.traffic and be.ac.ua.trafficlight. Both languages are con-
tained in 1 MPS project in order to manage them more easily. We also
create a solution, with a sandbox in it. Here you can insert instances of your
language, by creating instances of your root node concept(s). In our case,
TrafficNet will be the root node concept for our Traffic language. Please see
Figure 1 for the creation of the two languages and the solution.

Let us first develop the TrafficLight language (be.ac.ua.trafficlight). At
the left of Figure 2 you see the two concepts of this language, TrafficLight
and Light, describing the abstract syntax of the language. TrafficLight has
1 child of concept Light, with multiplicity 0..n. This means it can have zero
or multiple children of concept Light. It also has a reference startLight that
specifies which light is used as start light. On the right side of Figure 2
you can see the Light concept of the structure language aspect. The Light
concept has a reference nextLight that defines the next light in the chain. It
also three properties: a color, which is just an integer in this case but can be
implemented in Java once we use a generator, a time, that specifies how long

8



Figure 1: Creation of the 2 languages be.ac.ua.traffic and be.ac.ua.trafficlight and a solu-
tion be.ac.ua.sandbox

it takes before changing to the next light and finally a boolean pass, which
specifies if the cars can pass or not if this light is turned on.

Now we’re going to specify the concrete syntax of the TrafficLight lan-
guage. We can do this by using the editor aspect of the language. On the left
side of Figure 3 you can see that for both concepts a corresponding editor
node is created. On the right side the editor node for the TrafficLight concept
is expanded. It consists of several cells. To represent this concept we used
a vertical collection cell with two horizontal collection cells in it. The first
contains a constant cell ”Lights” followed by a vertical children collection cell
for the lights. A children collection cell lets you create and remove children
in the solution sandbox. When you create a child the editor of that child’s
concept will be shown. In this case, where Light is child of TrafficLight, it
will show the editor of the Light concept. The second contains a constant
cell ”Start light” followed by a reference cell for the editor of the reference
itself. The editor of the Light concept has cells for its name, time, pass and
color.

We don’t create a generator for the TrafficLight language because we’re
not going to execute a traffic light on its own. It is possible to do this, but
since this is not the main goal we will focus on simulating a traffic network.
We will use a generator for the Traffic language to transform it to Java code.

9



Figure 2: Structure aspect of the TrafficLight language

10



Figure 3: Editor aspect of the TrafficLight language

We will now develop the Traffic language (be.ac.ua.traffic). In Figure 4
we see all the concepts needed for the language. At the right we see the
TrafficNet concept. It can be a root node and it has several children: roads,
mergers, splitters, generators, sinks, cars and constraints. They all have
multiplicity 0..n. At the left side you see 2 interface concepts RoadObject
and RoadSegment. Like in Java, an interface concept cannot be instantiated.
Generator, RoadSegment and Sink all inherit from RoadObject. We did this
do be able to use the generator to generate Java simulation code for the
traffic network, but more on this later. RoadObject also implements the
build-in INamedConcept, that lets you define a name for an instance of that
concept. In our case, a name is necessary for connecting the roads, generators
and sinks, since referring to a node’s address is not very handy. Concepts
Road, Merger and Sink inherit from the interface concept RoadSegment,
which has a child of concept TrafficLight (from the TrafficLight language
we discussed above) with multiplicity 0..1. This way we need to specify
the TrafficLight only once, since it is also possible for a merger and splitter
to have a traffic light. To be able to choose this TrafficLight concept as a

11



Figure 4: Structure aspect of the Traffic language

child, you have to add the TrafficLight language (be.ac.ua.trafficlight) to the
Extended languages in Language properties.

A Road has two children, one Input concept and one Output concept. A
Merger has three children, two Input concepts and one Output concept. A
Splitter also has three children, one Input concept and two Output concepts.
A Generator only has one child, an Output concept. A Sink only has one
child, an Input concept. An Input concept has a reference to the Output
concept and the other way around. The Car concept has a reference to the
RoadSegment concept. Since a concept can only have references with mul-
tiplicity 0..1 or 1..1, we have created the ConstraintRoadReference concept.
The Constraint concept has a child of the ConstraintRoadReference concept

12



Figure 5: Editor aspect of the Traffic language

with multiplicity 0..n and the ConstraintRoadReference has a reference of
1..1 to the RoadSegment concept.

Now we can develop the editor for all the concepts. At the left of Figure 5
you see the editor of every concept of the Traffic language. At the right of
the figure you see the expanded editor of the Road concept. In Figure 6 you
can see the editor of the root concept TrafficNet.

It is also possible to add some constraints to the language. For every
concept it is possible to add constraints regarding its properties, children or
references. At the left of Figure 7 you can see several constraints, for example
a constraint for the Constraint concept that says that the value of it needs to
be larger or equal to 1. At the right of Figure 7 you can see the constraints
for the Generator concept. It has a constraint that automatically sets the
name of the output (child) port when you change the name of the generator
itself. For example, if you change the name of the generator to ”gen”, the
name of the output port will change to ”gen.out”. So now we can connect

13



Figure 6: Editor aspect of the Traffic language

14



Figure 7: Constraints of the Traffic language

an input port to this output port by using its name. The second constraint
of the Constraint concept says that the property number of cars to generate
needs to be larger or equal to 0.

We also used the behavior aspect of the language to specify a constructor
for the Generator, Road, Merger, Splitter and Sink concepts, like you can
see in Figure 8. For example, the Road constructor creates new instances
of the Input and Output concepts and sets them as its children. Then the
roadobject reference of the input and output ports will be set to this road.
We need this in order to get from a port to the corresponding road in the
generator language.

Since we have the abstract and concrete syntax of the language, we can
start specifying the semantics of the language. We’re going to use the gener-
ator language to build a transformation to Java. With the Java implemen-
tation we can simulate the traffic network step by step. We call this kind of
semantics, operational semantics.

15



Figure 8: Behavior aspect of the Traffic language

16



Figure 9: Mapping from the generator of the Traffic language

To make the transformation to Java, we first create a generator in the
language and we specify a mapping. In Figure 9 you can see the mapping.
The root mapping rule ”TrafficNet to TrafficNetImpl” specifies a mapping
from the TrafficNet concept, that has all the information of the traffic net-
work, to a Java class TrafficNetImpl. We’re going to use this class to store
all the roads, generators, sinks, etc and to start the simulation. At the top of
Figure 9 you can also see the mapping labels. These labels are used to keep
track of the names of local variables if we create one for a concept. It just
maps the concept onto the local variable declaration. We only create a Traf-
ficNetImpl class with the generator, all the other classes (Road, Constraint,
Car, ...) we need to obtain a OO design are written in Java and provided to
the MPS language as a stub (at the left of Figure 9).

In Figure 10 you can see a part of the Java class that will be generated.
At the top we specify the input node, this is the TrafficNet concept. The
class is named TrafficNetImpl but this name will be changed to the name

17



of the TrafficNet concept instance because it is encapsulated by a property
macro. A property macro lets us replace a piece of code by a property of the
concept. As fields we have lists of generators, roads, sinks, constraints, traffic
lights and cars. The classes Merger and Splitter in the runtime stub code
both inherit from the class Road. That’s why we only need a list of roads.
We use this lists to iterate over all the elements once we run the simulation.
For example when every car needs to move to the next road, we iterate over
the list of cars. In the constructor of the class we create local variables for all
the generators, roads, mergers, splitters and sinks in the TrafficNet instance.
We do this by using a loop macro. It inserts the encapsulated code for every
input node. In case of the generator local variable, this statement is inserted
for every generator in the TrafficNet instance. The only thing we need to be
careful of is the name of the local variable. We have to give them unique
names. This is done by the property macro around ”gen” (in case of the
generator statement). The mapping labels, we discussed earlier, keep track
of the names. What follows next is connecting the roads together, building
the traffic lights, creating cars and constraints and adding them to the lists.
Since road segments have input and output ports that link them together in
the high-level language, we can use this information to find their next and
previous road segments. We now have a class that can construct itself with
all the information of the traffic network defined in the high-level language.
It also has a main function and some (step by step) simulation code, but
more on that later.

We are now ready to create an instance of the language. In the solution
module, we created a sandbox be.ac.ua.traffic to add traffic networks. We
add a new root node TrafficNet to the sandbox. You can see in Figure 11
that the instance has the layout specified in the editor of the TrafficNet
concept. We named the traffic network ”MyTrafficNet”. We can now add
some generators, roads, sinks, etc. We can also give them names, set their
properties and connect them using the names of their ports. For a road,
merger or splitter we can build a traffic light using the TrafficLight language
editor we constructed. The result of the example traffic network is shown in
Figure 12. In the sandbox of the project you will also find an example of a
roundabout, named ”MyRoundabout”. In this traffic network there can only
be one car on the roundabout at once. Figure 13 shows the ”MyRoundabout”
traffic network. For more details on the examples you should look at the
solution module of the project.

Once you constructed your traffic network you can generate your solution

18



Figure 10: Some generation code for the TrafficNetImpl class

19



Figure 11: A traffic network example, named MyTrafficNet, created in the solution sand-
box

20



Figure 12: A traffic network example, named MyTrafficNet, created in the solution sand-
box

21



Figure 13: A traffic network example, named MyRoundabout, created in the solution
sandbox

22



using the ”Generate Solution” button. It will generate a Java class with all
the roads, constraints, etc. The name of the Java class is the name of the
TrafficNet concept instance, because we used a macro for this. Now you can
copy the generated file to your favorite Java IDE and run it. Remember that
you need all the classes in the Traffic runtime stub in order to run it. The
first step in the execution prints all the information about the traffic network.
It prints the details of every generator, road, merger, splitter, constraint and
traffic light. A road segment also has a counter that represents the number
of cars on it. Next we perform a step by step execution. At every step (time
slice) every generator, car and traffic light can perform one move. First every
traffic light can do one step, this means, increasing its timer and changing its
light when necessary. Second every car can move from one road segment to
another, if there are no constraints violated and it has clearance of the traffic
light (if present). Last every generator can generate a car. It will decrease its
remaining cars to generate and will put a new car on the next road segment
(if possible). The execution stops when there is no car anymore and every
generator is finished. For more details you can look at the TrafficNetImpl
class in the generator or at the Traffic runtime stub. Figure 14 and Figure 15
show 2 steps of the execution of the example traffic networks, ”MyTrafficNet”
and ”MyRoundabout”.

4. Comparison with AToM3

4.1. What is AToM3?

Like JetBrains MPS, AToM3 is also a model-driven engineering tool, more
precisely, it is a tool for multi-formalism and meta-modeling. In AToM3 it
is possible to build your own formalism (domain-specific language) by using
an existing formalism, for example Class Diagrams. It lets you create all the
classes you need for your new formalism in a graphical way. For example, the
meta-model of the Petri Net formalism in AToM3 is an instance model of the
Class Diagram formalism. In the Class Diagram model a place, a transition,
their attributes, their associations and the constraints of the language are
specified. An association specifies how to connect a class to another class.
Besides graphical modeling it is also possible to write some constraint code
in Python for the formalism. For every class in the Class Diagram formalism
one can specify the graphical appearance of the class in an instance model by
drawing it or selecting an image/icon. To create an instance model from the

formalism you need to restart AToM3, so it can be compiled, and load this

23



Figure 14: One step of the execution of the example traffic network MyTrafficNet

24



Figure 15: One step of the execution of the example traffic network MyRoundabout

25



formalism into the program. Then one can create instances of the classes by
using the buttons and clicking into the drawing window. It is also possible
to add buttons for other jobs, like simulation or transformation. In this case
you write Python code for the button yourself.

4.2. Comparison of both tools

In this section we’re going to compare the two tools based on the Traffic
language. For the Traffic and TrafficLight languages in JetBrains MPS we
used every concept of the AToM3 implementation to be able to compare
the two implementations more easily. The constraints for both language
implementations are quite the same. Table 1 gives an overview.

The most obvious difference between the two model-driven engineering
tools is of course the representation. With AToM3 models are presented
graphically (graph structure with associations). Even the creation of a lan-
guage in the Class Diagram formalism is graphical. As we said before, ev-
erything in JetBrains MPS is a node in an AST. In the editor aspect of
a language it is also possible to add cells with colors and special borders.
Therefore JetBrains MPS is not completely textual.

The construction of the abstract and concrete syntax of a language in
both tools is quite the same. In AToM3 the classes in the Class Diagram
model define the abstract syntax of the language. The associations, you
draw between the classes, define the possible connections. In Figure 16 you
can see a part of the Class Diagram model for the Traffic formalism. In
JetBrains MPS the abstract syntax is specified by all the created concepts in
the structure aspect of the language. Here, the children and references of a
concept define the possible connections. In both tools the associations have
multiplicities. For every class in the Class Diagram model of the language in
AToM3 and for every concept of the language in JetBrains MPS the concrete
syntax can be specified.

On the other hand, specifying the (operational) semantics of a language is
quite different. JetBrains MPS has a generator language that can transform
the language to a Java implementation. AToM3 doesn’t have this feature,
but it is still possible to give the language some semantics by making a button
for the formalism that performs a transformation or by making rewrite rules.
These rules can be defined with the built-in Transformation formalism. The
rules can be executed on the current graph and every step can be made visible.
So in order to do some simulation in AToM3 you can make a button that
holds code to transform the graph or you can use the built-in Transformation

26



Figure 16: Part of the Class Diagram model for the Traffic formalism

27



Figure 17: Loaded Traffic formalism and creation of a traffic network

formalism to do a rule based execution. In JetBrains MPS, simulation is not
possible, you first have to transform the language to code with the generator.
For many languages the visual simulation of AToM3 can be more appropriate.
But writing the generator is easier than writing code for a button because
a lot of code for traversing the graph structure in AToM3 is required. In
Figure 17 you can see the loaded Traffic formalism with its buttons to create
instances of the classes and an example traffic network. On the right you
can see a roundabout, like the one we build in the sandbox of MPS. In
Figure 18 you can see the same traffic network but now after pressing the
’One Step’ button a couple of times. The ’One Step’ button does one step of
the execution. The ’Simulate’ button does a complete step by step execution.

Defining constraints for the language is easier with AToM3 because you
can add global constraints concerning several classes. In JetBrains MPS it is
sometimes difficult to add constraints that concern several concepts because
a constraint only belongs to one concept. It is not always possible to get
to a node in the tree by only walking through the children, the references
and the parents, because at some point you don’t know the node’s type. It
is possible to do a type check, but there is no way to cast the node to the
specific concept. That’s why writing constraint code in AToM3 is sometimes

28



Figure 18: Execution of the traffic network in AToM3

easier, despite all the logic for traversing the graph.
In both tools it is possible to open several formalisms/languages at the

same time. In AToM3 you can draw instances of classes from every loaded
formalism. In JetBrains MPS a project can contain multiple languages and
languages can use other languages. In the sandbox you can add root nodes
from all languages in the project. Unlike JetBrains MPS, AToM3 is not able
to extend languages with other languages. It is also impossible to use classes
of other languages in your language.

For model-driven engineering there are still a lot of things to do before
it really can be a breakthrough in the software engineering community. For
example: if a meta-model changes, all the models also need to change, but
this requires some complicated transformation rules. It would also be great
if the changes are immediately made in the model and not after compila-
tion. This is still a hot topic in model-driven engineering. Therefore we
are going to examine how well changes are performed on the instances of
the classes/concepts after a change of the language/formalism is made. In

AToM3 the instance models are stored as Python files. A change in the meta-
model (formalism) will result in a model (or some class instances) that can’t
be loaded anymore. In JetBrains MPS there is more support for changes

29



by automatic refactoring mechanisms. After a name change in the language
structure aspect, the references (and children) are immediately changed by
refactoring. The node instances in the sandbox model will be changed to. If
you delete a concept or a property, the nodes in the sandbox model and in
functions of the constraint and action aspects of the language are not aware
of this and will be seen as errors.

Finally we compare the two tools based on user-friendliness. Here Jet-
Brains MPS is the indisputable winner. AToM3 still has a lot of bugs that
makes developing hard. JetBrains MPS has powerful refactoring mechanisms
and there are almost no bugs in it.

The conclusion is simple, building a small traffic network can easily be
done by the MPS implementation, but when building larger traffic networks
the graphical features of AToM3 come in handy. With MPS it is easy to get
lost in all the roads, mergers and splitters that are summed up in the traffic
network.

5. Conclusions & future work

We saw that traditional programming is still very famous, but if we want
to continue to evolve we need to think further than an ordinary object-
oriented design. With model-driven engineering a new era of software engi-
neering has begun. JetBrains MPS implements language oriented program-
ming, a specific part of the model-driven engineering domain. We have shown
with an example, the language Traffic, that extending and mixing languages
is quite easy in this new paradigm. We then used the generator language
to transform our higher-level language to a Java implementation, used to
simulate the traffic network. In other words, we gave the language some
operational semantics.

We came to the conclusion that some languages, like Traffic, are better
designed in a graphical tool like AToM3, but other languages, that don’t
need graphical simulation and features, can easily be designed in MPS too.
In terms of IDE quality, MPS is somewhat better than AToM3. AToM3 still
has some bugs in it that makes developing hard. MPS on the other hand
works great, especially with the refactoring tools, and didn’t seem to have
any bugs.

30



AToM3 JetBrains MPS

Representation Visual Textual/Visual
Abstract syntax Classes in Class Dia-

gram model + associ-
ations

Concepts in structure
aspect (children, refer-
ences)

Concrete syntax Icons/images for class
instances

Editor aspect (cell lay-
out)

Code generation Button in formalism Generator language

Simulation Button in formalism
Rewrite rules

Only after generation
(in Java)

Constraints Multiplicities
Constraints in code

Multiplicities
Constraint aspect

Multiple formalisms Yes Yes
Extending languages
Weaving languages

No Yes

Change in meta-
model results in
change in model

No Names (after refactor-
ing)

User-friendliness
(+/++/+++)

+ +++

Table 1: A comparison of AToM3 and JetBrains MPS

31



For the moment the Traffic language implementation in JetBrains MPS
(or AToM3) is not really useful for real analysis, but it must be seen as a
proof of concept. To make the language and the transformation to Java more
useful we can add extra features like queuing for road segments, a notion of
fairness or a more realistic execution (rather than a stepwise execution) and
a more extensive TrafficLight language. For the Traffic language in JetBrains
MPS we also lack the graphical features of AToM3. Probably the graphical
simulation in AToM3 is more appropriate for this kind of language. But if
we use MPS’ generator to transform the program in the high-level language
to an implementation in Java with a GUI, then this can give the same or
perhaps better results then the AToM3 implementation.

Dmitriev, S., November 2004. Language oriented programming: The next
programming paradigm.

Ward, M. P., October 1994. Language oriented programming. Tech. rep.,
Computer Science Department, Science Labs, South Rd, Durham, DH1
3LE.

32


